Funciones trigonométricas de ángulos notables
En la actualidad para obtener el valor de una razón trigonométrica a partir de un ángulo dado, simplemente se utiliza una calculadora en la cual se introduce el valor del ángulo dado y se evalúa en la relación trigonométrica requerida. Los valores de estas razones también se pueden obtener utilizando triángulos rectángulos, cuyos ángulos serán a los que se les quiere encontrar sus razones trigonométricas. En ocasiones este método es muy engorroso, ya que para crear los triángulos se deben realizar bastantes operaciones. Sin embargo, existen ángulos en los que es muy fácil; a estos ángulos se les conoce como ángulos notables.
En las matemáticas y específicamente en la trigonometría, la palabra “notable” se utiliza para referirnos a procesos o valores que están bien definidos o muy comunes, y por ende, se reconocen y memorizan fácilmente. En este sentido, los ángulos notables son aquellos que tienen valores que aparecen muy seguido en la vida cotidiana. Estos ángulos son los de 30°, 45° y 60° y, en segundo lugar, los ángulos de 0°, 90°, 180°, 270° y 360°. Estos últimos, aunque no están definidos como 'notables', también son muy comunes.
Para los 3 ángulos notables podemos encontrar las razones trigonométricas —seno, coseno, tangente, cotangente, secante y cosecante— sin conocer las medidas exactas de los triángulos que los contienen, pues estos ángulos están contenidos en dos triángulos muy especiales e importantes en geometría, a saber: los triángulos isósceles rectángulos y los triángulos equiláteros.

Créditos y condiciones de uso
Introducción elaborada para la unidad de enseñanza-aprendizaje Taller de Matemáticas de la Universidad Autónoma Metropolitana, unidad Cuajimalpa, en colaboración con el Laboratorio LITE de Innovación en Tecnología Educativa S.C.
- Autor de la unidad: Víctor Hugo García Jarillo
- Revisión: Tine Stalmans

Los contenidos de esta unidad didáctica interactiva están bajo una licencia Creative Commons Reconocimiento-NoComercial-CompartirIgual.
La unidad didáctica contiene escenas elaboradas con Descartes, una herramienta de código abierto.